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SOLVING LINEAR FUZZY FREDHOLM INTEGRAL EQUATIONS OF THE

SECOND KIND VIA ITERATIVE METHOD AND SIMPSON

QUADRATURE RULE: A REVIEW

ATIYEH MASHHADI GHOLAM1, REZA EZZATI1

Abstract. In this paper, first, we survey some methods to solve fuzzy Fredholm integral equa-

tion such as iterative trapezoidal quadrature rule, hybrid of block-pulse functions and Taylor

series, iterative fuzzy wavelet like operator method. Then, we introduce a new method of suc-

cessive approximations based on the Simpson quadrature rule for solving linear fuzzy Fredholm

integral equations of the second kind (LFFIE-2). Moreover, we present the convergence analysis.

Also, we present numerical stability analysis of the proposed method. Furthermore, we give a

stopping criterion. Finally, to illustrate the applicability of the proposed method, we present

some numerical tests.

Keywords: integral equation, iterative method, Simpson quadrature rule, convergence analysis,
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1. Introduction

For the first time in 1982, Dubios and Prade [12] introduced a concept of fuzzy integration.

Also, Goetschel and Voxman [19], Kaleva [24] and others presented alternative approaches. Since

many fuzzy-valued problems in engineering can be brought in the form of fuzzy differential

and integral equations, it is important that we discuss them. For this reason in recent years,

numerical solution of fuzzy integral and differential equations have been studied by many authors

[3, 6-8, 10, 11, 13-21, 23, 24, 26, 28-39]. In [36], Wu and Ma investigated application of fuzzy

integration for solving fuzzy Fredholm integral equation of the second kind. Bede and Gal in [9]

introduced quadrature rules for integrals of fuzzy-number-valued function. Babolian et al. [6]

presented a numerical solution of LFFIE-2 by Adomian method. Parandin and Fariborzi Araghi

in 2009, proposed approximate solution of LFFIE-2 by using iterative interpolation [34]. In [32],

Homotopy Analysis Method (HAM) is used for solving LFFIE. Ziari et al. [39] used Haar wavelet

to solve fuzzy linear integral equation. Also, in [16] Ezzati and Ziari presented numerical solution

of nonlinear FFIE using iterative method. After this, Ziari and Bica in [37] presented a new error

estimate in the iterative numerical method for nonlinear fuzzy Hammerstein-Fredholm integral

equations. In 2014, Hosseini Fadravi et al. [21] solved LFFIEs-2 by artificial neural networks.

Recently, solving FFIE using sinc method and double exponential transformation was done by

Fariborzi et al. [17].
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Here, first, we propose an iterative method via the Simpson quadrature formula for solving

the following LFFIE

F (t) = f(t)⊕ (FR)

b∫
a

K(s, t)⊙ F (s)ds, (1)

where K(s, t) is a positive crisp kernel function over the square s, t ∈ [a, b], f(t) is a fuzzy valued

function. Then, we prove the convergence analysis of the proposed method. Also, we present

numerical stability analysis for the presented method based on the choice of the first iteration.

The paper is organized as follows: In Section 2, we give basic information about the fuzzy

set theory. In Section 3, we state some of the proposed methods by authors of [7, 10, 16, 30]

for solving FFIE. In Section 4, we present the proposed method to obtain numerical solution of

LFFIE (1) based on iterative method and Simpson quadrature rule. In Section 5 and Section

6, the convergence analysis, stopping criterion and the numerical stability analysis are proved,

respectively. In Section 7, we apply the proposed method for some examples and show the

efficiency of the proposed method by comparing the numerical results with the exact solutions

and the method of [16].

2. Preliminaries

In this section, we review the most basic notations used in the fuzzy calculus.

Definition 2.1 ([1, 5]). Let u : R → [0, 1] with the following properties:

(1) u is normal, i.e. ∃ x0 ∈ R; u(x0) = 1.

(2) u(ηx + (1 − η)y) ≥ min{u(x), u(y)}, ∀ x, y ∈ R, ∀ η ∈ [0, 1] (u is called a convex fuzzy

subset).

(3) u is upper semicontinuous on R, i.e., ∀ x0 ∈ R and ∀ ϵ > 0, ∃ neighborhood V (x0) :

u(x) ≤ u(x0) + ϵ, ∀ x ∈ V (x0).

(4) The set supp(u) is compact in R where supp(u) := {x ∈ R;u(x) > 0}.
The set of all fuzzy numbers is denoted by RF .

Definition 2.2 ([2, 5]). For 0 < r ≤ 1 and u ∈ RF define [u]r := {x ∈ R : u(x) ≥ r} and

[u]0 := {x ∈ R : u(x) > 0}.

Then it is well known that for each r ∈ [0, 1], [u]r is a closed and bounded interval of R. For ũ,

ṽ ∈ RF and λ ∈ R, we define uniquely the sum ũ⊕ ṽ and the product λ⊙ ũ by

[ũ⊕ ṽ]r = [ũ]r + [ṽ]r, [λ⊙ ũ]r = λ[ũ]r, ∀ r ∈ [0, 1],

where [ũ]r+[ṽ]r means the usual addition of two intervals (as subsets of R) and λ[ũ]r means the

usual product between a scalar and a subset of R. Notice 1⊙ ũ = ũ and it holds ũ⊕ ṽ = ṽ ⊕ ũ,

λ⊙ ũ = ũ⊙λ. If 0 ≤ r1 ≤ r2 ≤ 1 then [ũ]r2 ⊆ [ũ]r1. Actually [ũ]r = [ũ
(r)
− , ũ

(r)
+ ], where ũ

(r)
− ≤ ũ

(r)
+ ,

ũ
(r)
− , ũ

(r)
+ ∈ R, ∀ r ∈ [0, 1]. For λ > 0 one has λũ

(r)
± = (λ⊙ ũ)

(r)
± , respectively.

Definition 2.3 ([5]). Define D : RF × RF → R+ by

D(ũ, ṽ) := sup
r∈[0,1]

max

{ ∣∣∣ũ(r)− − ṽ
(r)
−

∣∣∣ , ∣∣∣ũ(r)+ − ṽ
(r)
+

∣∣∣ }
= sup

r∈[0,1]
Hausdorff distance ([ũ]r, [ṽ]r),
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where [ṽ]r = [ṽ
(r)
− , ṽ

(r)
+ ]; ũ, ṽ ∈ RF . We have that D is a metric on RF . Then (RF , D) is a

complete metric space, with the properties

D(ũ⊕ w̃, ṽ ⊕ w̃) = D(ũ, ṽ), ∀ ũ, ṽ, w̃ ∈ RF ,

D(k′ ⊙ ũ, k′ ⊙ ṽ) =
∣∣k′∣∣D(ũ, ṽ), ∀ ũ, ṽ ∈ RF ,∀ k′ ∈ R,

D(ũ⊕ ṽ, w̃ ⊕ ẽ) ≤ D(ũ, w̃) +D(ṽ, ẽ), ∀ ũ, ṽ, w̃, ẽ ∈ RF .

Definition 2.4 ([5]). Let f, g : R → RF be fuzzy number valued functions. The distance between

f , g is defined by

D∗(f, g) := sup
x∈R

D(f(x), g(x)).

Lemma 2.1 ([5],[25]). (1) If we denote 0̃ := χ{0}, then 0̃ ∈ RF is the neutral element with

respect to ⊕, i.e., ũ⊕ 0̃ = 0̃⊕ ũ = ũ, ∀ ũ ∈ RF .

(2) With respect to 0̃, none of ũ ∈ RF , ũ ̸= 0̃ has opposite in RF .

(3) Let α, β ∈ R : α.β ≥ 0, and any ũ ∈ RF , we have (α + β) ⊙ ũ = α ⊙ ũ ⊕ β ⊙ ũ. For

general α, β ∈ R, the above property is false.

(4) For any γ ∈ R and any ũ, ṽ ∈ RF , we have γ ⊙ (ũ⊕ ṽ) = γ ⊙ ũ⊕ γ ⊙ ṽ.

(5) For any γ, η ∈ R and any ũ ∈ RF , we have γ ⊙ (η ⊙ ũ) = (γ ⊙ η)⊙ ũ.

If we denote ∥ũ∥F := D(ũ, 0̃), ∀ ũ ∈ RF , then ∥.∥F has the properties of a usual norm on RF ,

i.e.,

∥ũ∥F = 0 iff ũ = 0̃, ∥λ⊙ ũ∥F = |λ| . ∥ũ∥F ,

∥ũ⊕ ṽ∥F ≤ ∥ũ∥F + ∥ṽ∥F , ∥ũ∥F − ∥ṽ∥F ≤ D(ũ, ṽ).

Notice that (RF ,⊕,⊙) is not a linear space over R, and consequently (RF , ∥.∥F ) is not a normed

space. Here
∑∗ denoted the fuzzy summation.

Definition 2.5 ([5]). A fuzzy valued function f : [a, b] → RF is said to be continuous at

x0 ∈ [a, b], if for each ϵ > 0 there is δ > 0 such that D(f(x), f(x0)) < ϵ, whenever x ∈ [a, b] and

|x− x0| < δ. We say that f is fuzzy continuous on [a, b] if f is continuous at each x0 ∈ [a, b],

and denote the space of all such functions by CF [a, b].

Definition 2.6 ([9]). Let f : [a, b] → RF be a bounded mapping. Then the function ω[a,b](f, .) :

R+ ∪ {0} → R+

ω[a,b](f, δ) = sup{D(f(x), f(y));x, y ∈ [a, b], |x− y| ≤ δ},

is called the modulus of oscillation of f on [a, b].

If f ∈ CF [a, b] (i.e. f : [a, b] → RF is continuous on [a, b]), then ω[a,b](f, δ) is called uniform

modulus of continuity of f .

The following properties will be very useful in what follows.

Theorem 2.1 ([9]). The following statements, concerning the modulus of oscillation, are true:

(1) D(f(x), f(y)) ≤ ω[a,b](f, |x− y|), ∀ x, y ∈ [a, b],

(2) ω[a,b](f, δ) is a nondecreasing mapping in δ,

(3) ω[a,b](f, 0) = 0,

(4) ω[a,b](f, δ1 + δ2) ≤ ω[a,b](f, δ1) + ω[a,b](f, δ2), ∀ δ1, δ2 ≥ 0,

(5) ω[a,b](f, nδ) ≤ nω[a,b](f, δ), ∀ δ ≥ 0, n ∈ N,
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(6) ω[a,b](f, ηδ) ≤ (η + 1)ω[a,b](f, δ), ∀ δ, η ≥ 0.

Definition 2.7 ([5]). Let f : [a, b] → RF . We say that f is fuzzy-Riemann integrable to I ∈ RF

if for any ϵ > 0, there exists δ > 0 such that for any division P = {[u, v]; ξ} of [a, b] with the

norms ∆(p) < δ, we have

D

( ∗∑
p

(v − u)⊙ f(ξ), I

)
< ϵ,

where
∑ ∗ denotes the fuzzy summation. We choose to write

I := (FR)

b∫
a

f(x)dx.

We also call an f as above (FR)-integrable.

Lemma 2.2 ([5]). If f, g : [a, b] ⊆ R → RF are fuzzy continuous functions, then the function

F : [a, b] → R+ defined by F (x) := D(f(x), g(x)) is continuous on [a, b], and

D

(FR)

b∫
a

f(x)dx, (FR)

b∫
a

g(x)dx

 ≤
b∫

a

D(f(x), g(x))dx.

Definition 2.8 ([9]). A function f : [a, b] → RF is said to be Lipschitz if

D(f(x), f(y)) ≤ L |x− y| , (2)

for any x, y ∈ [a, b].

Theorem 2.2 ([9]). Let f : [a, b] → RF be a Henstock integrable, bounded mapping. Then, for

any division a = x0 < x1 < · · · < xn = b and any points ξi ∈ [xi−1, xi] we have

D

(FH)

b∫
a

f(t)dt,

n∑
i=1

(xi − xi−1)⊙ f(ξi)


≤

n∑
i=1

(xi − xi−1)ω[xi−1,xi](f, xi − xi−1).

By the above theorem, the following results hold:

Corollary 2.1 ([9]). Let f : [a, b] → RF be a Henstock integrable, bounded mapping. Then

(1) D

(FH)

b∫
a

f(t)dt,
b− a

2
⊙
(
f(a)⊕ f(b)

) ≤ b−a
2 ω[a,b]

(
f, b−a

2

)
,

(2)

D

(FH)

b∫
a

f(t)dt,
b− a

6
⊙
(
f(a)⊕ 4⊙ f

(
a+ b

2

)
⊕ f(b)

)
≤ 3(b− a)ω[a,b]

(
f,

b− a

6

)
.
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Theorem 2.3 ([4]). Let f ∈ Cn,1
F [a, b], n ≥ 1, [α, β] ⊆ [a, b] ⊆ R. Then

f(β) = f(α)⊕ (β − α)⊙ f ′(α)⊕ · · · ⊕ (β − α)n−1

(n− 1)!
⊙ f (n−1)(α)

⊕ 1

(n− 1)!
⊙ (FR)

β∫
α

(β − t)n−1 ⊙ f (n)(t)dt. (3)

The integral remainder is a fuzzy continuous function in β.

3. A review of solving FFIE using iterative method

In past, for solving FFIE several methods by many authors were presented. In this section,

we briefly review some presented methods for solving FFIE.

3.1. Numerical solution of NFFIEs by successive approximations and trapezoidal

quadrature rule. Consider the nonlinear fuzzy Fredholm integral equation (NFFIEs)

F (t) = f(t)⊕ (FR)

b∫
a

K(t, s, F (s))ds, t ∈ [a, b], (4)

such that the functions f : [a, b] → RF and K : [a, b] × [a, b] × RF → RF are continuous. Also,

suppose that K is uniformly continuous with respect to t. Assume that there exists M > 0 such

that

∥K(s, t, u)∥F ≤ M, ∀t, s ∈ [a, b], ∀u ∈ RF .

In [10], author generalized the quadrature formula to approximate

(FR)

b∫
a

f(t)dt by
n−1∑
i=0

(FR)

ti+1∫
ti

f(t)dt

for partition

∆ : a = t0 < t1 < · · · < tn−1 < tn = b,

and presented the following result

D

(
(FR)

b∫
a

f(t)dt,
n−1∑
i=0

(ti+1 − ti)

2
⊙ [f(ti)⊕ f(ti+1)]

)
≤ L(b− a)2

4n
. (5)

In the following theorem, the existence and uniqueness of the solution (4) was showed by

using the Banach fixed point principle.

Consider the space of functions

X = {f : [a, b] → RF | f is continuous},

with the metric D∗(f, g) = sup
a≤t≤b

D(f(t), g(t)). Recall the fact that (X,D∗) is complete metric

space (see [24]).



126 TWMS J. PURE APPL. MATH., V.8, N.2, 2017

Theorem 3.1 ([10]). Assume that the functions f and K are continuous. Moreover, K is

uniformly continuous with respect to t and there exist L > 0, M > 0 such that

∥K(s, t, u)∥F ≤ M, ∀t, s ∈ [a, b], ∀u ∈ RF ,

and

D(K(t, s, u),K(t, s, v)) ≤ L.D(u, v), ∀t, s ∈ [a, b], ∀u, v ∈ RF .

If L(b − a) < 1 then Eq. (4) has a unique solution F ∗ ∈ X, which can be obtained by means

of the method of successive approximations starting by any element of X. Furthermore, in

the approximation of the solution by the terms of the sequence of successive approximations,

(Fm)m∈N,

F0(t) = f(t),

Fm+1(t) = f(t)⊕ (FR)

b∫
a

K(t, s, Fm(s))ds, ∀t ∈ [a, b], ∀m ∈ N∗,

the error estimate is

D(F ∗(t), Fm(t)) ≤ [L(b− a)]m

1− L(b− a)
.M(b− a), t ∈ [a, b], ∀m ∈ N∗. � (6)

Also, author of [10] presented the successive approximations and iterative quadrature rule on

the knots of the partition ∆ for solving FFIE (4) as follows:

u0(ti) = f(ti), ∀i = 0, · · · , n

um(ti) = f(ti)⊕
n−1∑
j=0

(b− a)

2n
⊙ [K(ti, tj , um−1(tj))⊕K(ti, tj+1, um−1(tj+1))]. (7)

Finally, in the following theorem, author of [10] proved the convergence analysis for the

proposed method.

Theorem 3.2 ([10]). Assume that

(i) The functions f and K are continuous;

(ii) There is M > 0 such that ∥K(t, s, u)∥F ≤ M , ∀t, s ∈ [a, b], ∀u ∈ RF ;

(iii) There is δ > 0 such that D(f(s′), f(s′′)) ≤ δ |s′ − s′′|, ∀s′, s′′ ∈ [a, b];

(iv) There is β > 0, γ > 0, L > 0 such that

D(K(t′, s, u),K(t′′, s, u)) ≤ β
∣∣t′ − t′′

∣∣ , ∀t′, t′′, s ∈ [a, b], ∀u ∈ RF ,

and

D(K(t, s′, u),K(t, s′′, v)) ≤ γ
∣∣s′ − s′′

∣∣+ L.D(u, v), ∀t, s′, s′′ ∈ [a, b], ∀u, v ∈ RF ; (8)

(v) L(b− a) < 1.
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Then the unique solution F ∗ of Eq. (4) is approximated on the knots ti, i = 0, · · · , n of the

partition ∆ by the sequence (um(ti))m∈N, given in Eq. (7), and the error estimate is

D(F ∗(ti), um(ti)) ≤
[L(b− a)]m

1− L(b− a)
.M(b− a) +

L′(b− a)2

4n[1− L(b− a)]
, (9)

∀m ∈ N∗, ∀i = 0, · · · , n,

where

L′ = max{γ + Lδ, γ + L[δ + β(b− a)]}. �

3.2. Numerical solution of Hammerstein NFFIE by successive approximations and

trapezoidal quadrature rule. Consider the NFFIE

F (t) = f(t)⊕ (FR)

b∫
a

K(s, t)⊙G(F (s))ds, t ∈ [a, b], (10)

where K(s, t) is a positive crisp kernel function over the square a ≤ s, t ≤ b, F (t) is a fuzzy

valued function and G : RF → RF is continuous.

In [16], authors introduced a numerical method based on the iterative method and quadrature

rule to solve Eq. (10) as follows:

u0(t) = f(t),

um(t) = f(t) (11)

⊕
n−1∑
j=0

h

2
⊙ [K(tj , t)⊙G(um−1(tj))⊕K(tj+1, t)⊙G(um−1(tj+1))],m ≥ 1,

where ti = a+ ih, i = 0, 1, · · · , n, and h = b−a
n . In the following theorem, authors o [16] proved

the existence and uniqueness solution of Eq. (10) by using the Banach fixed point theorem.

Theorem 3.3 ([16]). Let the function K(s, t) be continuous and positive for a ≤ s, t ≤ b, and

function f(t) be a fuzzy continuous in [a, b]. Moreover, suppose that there exists L > 0, with

D(G(F1(u)), G(F2(v))) ≤ L.D(F1(u), F2(v)), ∀u, v ∈ [a, b].

If C = ML(b − a) < 1 then the fuzzy integral Eq. (10) has a unique solution F ∗ ∈ X, and it

can be obtained by the following successive approximations method:

F0(t) = f(t),

Fm(t) = f(t)⊕ (FR)

b∫
a

K(s, t)⊙G(Fm−1(s))ds, ∀t ∈ [a, b],m ≥ 1. (12)

Moreover, the sequence of successive approximations, (Fm)m≥1, converges to the solution F ∗.

Furthermore, the following error bound holds:

D(F ∗(t), Fm(t)) ≤ Cm+1

L(1− C)
M0, ∀t ∈ [a, b],m ≥ 1, (13)

where M0 = sup
a≤t≤b

∥G(f(t))∥F . �

Now, in the following theorem we review the error estimation for the proposed method in

[16].
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Theorem 3.4 ([16]). Consider the nonlinear fuzzy Fredholm Eq. (10) with continuous kernel

K(s, t) having positive sign on [a, b]×[a, b], G continuous on RF , f continuous on [a, b]. Besides,

we have L > 0 such that

D(G(F1(u)), G(F2(v))) ≤ L.D(F1(u), F2(v)), ∀u, v ∈ [a, b].

If C = ML(b − a) < 1 where M = max
s,t∈[a,b]

|K(s, t)|, then the iterative procedure (11) converges

to the unique solution of Eq. (10), F ∗, and its error estimate is as follows:

D∗(F ∗, um) ≤ C

2(1− C)
ω[a,b](f, h) +

Cm+1L1

L(1− C)

+
C2 + 2C

2LM(1− C)
(L1ωs(k, h) + L2ωt(k, h)). � (14)

3.3. Numerical solution of NFFIEs using hybrid of block-pulse functions and Taylor

series. Firstly, we review some definitions of the hybrid block-pulse functions and Taylor series

and we generalize them to the fuzzy setting which were written by authors of [7].

Definition 3.1 ([22]). Block-pulse functions ϕi(t), i = 1, · · · , N , on the interval [0, 1), are

defined as

ϕi(t) =

{
1, i−1

N ≤ t < i
N ,

0, otherwise,

where N is an arbitrary positive integer.

The block-pulse functions on [0, 1) are disjoint, so for i, j = 1, 2, · · · , N , we have ϕi(t)ϕj(t) =

δijϕi(t), where δij is the Kronecker delta, also these functions have the property of orthogonality

on [0, 1).

Consider the set of Taylor polynomials Tm(t) = tm, m = 0, 1, 2, · · · . For M being an arbitrary

positive integer, hybrid Taylor block-pulse functions are defined as follows.

Definition 3.2 ([27, 28]). The set of hybrid Taylor block-pulse functions hij, i = 1, · · · , N ;

j = 0, · · · ,M , on the interval [0, 1) are defined as

hij(t) =


Tj(Nt− (i− 1)), i−1

N ≤ t < i
N ,

0, otherwise

(15)

where i and j are the order of block-pulse functions and Taylor polynomials, respectively.

In [7], first, authors defined function approximation by using fuzzy hybrid of block-pulse

functions and Taylor series and then, in Theorems 3.5 and 3.6, found the error estimation for

the proposed method.

3.3.1. Function approximation. For f ∈ C l−1
F [0, 1], let us consider a fuzzy hybrid polynomial of

degree l − 1,

TF
M (f)(t) =

N∑
i=1

l−1∑
j=0

fij ⊙ hij(t) = F T ⊙H(t), (16)

where hij(t) is defined in Eq. (15) and fij are given by
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fij =
1

N jj!
f (j)(t)|t= i−1

N
(17)

and also

F = [f10, · · · , f1(l−1), f20, · · · , f2(l−1), · · · , fN0, · · · , fN(l−1)]
T ,

H(t) = [h10(t), · · · , h1(l−1)(t), h20(t), · · · , h2(l−1)(t), · · · , hN0(t), · · · , hN(l−1)(t)]
T .

Theorem 3.5 ([7]). If f ∈ C l,1
F [0, 1] and we have K > 0, where K = sup

0≤t≤1

∥∥f (l)(t)
∥∥
F
, then

D∗(TF
l (f), f) ≤ K

l!N l
. � (18)

This shows that

lim
l,N→∞

D∗(TF
l (f), f) = 0. �

Consider NFFIE (10), where K(s, t) is a positive crisp kernel function over the square (s, t) ∈
[a, b], F (t) is a fuzzy-valued function and G : RF → RF is continuous. Authors of [7] suppose

that K is continuous and therefore it is uniformly continuous with respect to t and there exists

M > 0, such that M = max
a≤s,t≤b

|K(s, t)|. To approximate the solution of this equation, authors

of [7] introduced a new approach as follows:

u0(t) = f(t),

um(t) = f(t)⊕
N∑
i=1

l−1∑
j=0

Hij(t)⊙ g
(m−1)
ij , ∀t ∈ [0, 1],m ≥ 1, (19)

where ti = ih, h = 1
N , g

(m−1)
ij is a fuzzy number defined by

g
(m−1)
ij =

1

N jj!

(
djG(um−1(t))

dtj

)
|t= i−1

N
, i = 1, 2 · · · , N, j = 0, 1, · · · , l − 1,

and

Hij(t) =

1∫
0

k(s, t)hij(s)ds.

The following theorem presents the convergence of the iterative procedure (19) proposed for the

solution of Eq. (10).

Theorem 3.6 ([7]). Suppose that Eq. (10) satisfies the following conditions:

(i) f : [a, b] → RF is fuzzy continuous.

(ii) K : [0, 1]×[0, 1] → R+ is continuous and there exists M > 0, such that M = max
0≤s,t≤1

|K(s, t)|.

(iii) G : RF → RF is fuzzy differentiable of order l, for positive integer number l. In addition,

there exists L > 0 such that

D(G(F1(u)), G(F2(v))) ≤ L.D(F1(u), F2(v)), ∀u, v ∈ [0, 1],
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where L < M−1 and F1, F2 : [0, 1] → RF . Then the iterative procedure Eq. (19) convergence

to the unique solution of Eq. (10), F ∗, and its error estimate is as follows:

D∗(F ∗, um) ≤ M

1−ML

(
M0(ML)m +

K ′

N ll!

)
,

where M0 = sup
0≤t≤1

∥G(f(t))∥F ,

K ′ = max

{
sup

0≤t≤1

∥∥∥∥dlG(un(t))

dtl

∥∥∥∥
F

; 0 ≤ n ≤ m− 1

}
. � (20)

3.4. The numerical solution of nonlinear Hammerstein fuzzy integral equations by

using fuzzy wavelet like operator. In [30], authors proposed a numerical procedure based

on the fuzzy wavelet like operator for solving NHFIE

x(t) = g(t)⊕ (FR)

b∫
a

H(t, s)⊙ f(s, x(s))ds, (21)

where H(t, s) is an arbitrary kernel function over the square a ≤ s, t ≤ b and g(t) is a fuzzy

valued function of t.

In the following theorem, first, Mokhtarnejad and Ezzati [30] reviewed the function approx-

imate by using fuzzy wavelet like operator and also they recalled the pointwise and uniformly

convergence of the proposed method.

Theorem 3.7 ([4]). Let f ∈ CF (R) and the scaling function ϕ(x) a real-valued bounded function

with supp ϕ(x) ⊆ [−a, a], 0 < a < +∞, ϕ(x) ≥ 0, such that

+∞∑
j=−∞

ϕ(x− j) = 1,

on R. For k ∈ Z, x ∈ R, put

(Bkf)(x) :=

+∞∑
j=−∞

f

(
j

2k

)
⊙ ϕ(2kx− j),

which a fuzzy wavelet like operator. Then

D((Bkf)(x), f(x)) ≤ ωR

(
f,

a

2k

)
,

for all x ∈ R and k ∈ Z. If f ∈ CU
F (R), then as k → +∞ one gets ωR

(
f, a

2k

)
→ 0 and

lim
k→+∞

Bkf = f , pointwise and uniformly with rates. �

As [11], consider the following conditions:

(i) g ∈ CF ([a, b]), f ∈ CF ([a, b]× RF ) and H ∈ C2([a, b]), H(t, s) ≥ 0, ∀t, s ∈ [a, b];

(ii) there exist α, γ ≥ 0 such that

D(f(s, u), f(s′, v)) ≤ γ
∣∣s− s′

∣∣+ αD(u, v),

for all s, s′ ∈ [a, b], u, v ∈ RF ;
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(iii) αMH(b− a) < 1, βMH(b− a) < 1 where MH ≥ 0 is such that |H(t, s)| ≤ MH .

(iv) there exist β ≥ 0 such that

D(g(t), g(t′)) ≤ β
∣∣t− t′

∣∣ , ∀t, t′ ∈ [a, b];

(v) there exist µ ≥ 0 such that∣∣H(t, s)−H(t′, s)
∣∣ ≤ µ

∣∣t− t′
∣∣ , ∀t, t′ ∈ [a, b];

(vi) there exist δ ≥ 0 such that∣∣H(t, s)−H(t, s′)
∣∣ ≤ δ

∣∣s− s′
∣∣ , ∀s, s′ ∈ [a, b];

Now, in Theorem 3.8 and 3.9, authors of [30] explained the conditions of the existence and

uniqueness of the solution Eq. (21) and then they were presented an error estimation for the

proposed method.

Theorem 3.8 ([30]). (a) Under the conditions (i)–(iii) the integral equation (21) has a unique

solution in CF ([a, b]), x∗ ∈ CF ([a, b]) and sequence of successive approximations (xk)k∈N ⊂
CF ([a, b]),

xk(t) = g(t)⊕ (FR)

b∫
a

H(t, s)⊙ f(s, xk(s))ds, ∀t ∈ [a, b], k ≥ 1, (22)

converges to x∗ in CF ([a, b]) for any choice of x0 ∈ CF ([a, b]). In addition, the following error

estimates hold:

D(x∗(t), xk(t)) ≤
(αMH(b− a))k

1− αMH(b− a)
D(x1(t), x0(t)), ∀t ∈ [a, b], k ≥ 1. (23)

Choosing x0 ∈ CF ([a, b]), x0 = g0 the inequality upper results in

D(x∗(t), xk(t)) ≤
(αMH(b− a))k

1− αMH(b− a)
M0MH(b− a), ∀t ∈ [a, b], k ≥ 1,

where M0 ≥ 0. Moreover, the sequence of successive approximations (22) is uniformly bounded,

that is, there exists a constant R ≥ 0 such that D(xk, 0̃) ≤ R, for all t ∈ [a, b], k ≥ 1, solution

x∗ is bounded too.

(b) Under the conditions (i)–(v), the sequence of successive approximations (22) is uniformly

Lipschitz, that is, there exist a constant L0 ≥ 0 such that

D(xk−1(t), xk−1(t
′)) ≤ L0

∣∣t− t′
∣∣ , ∀t, t′ ∈ [a, b], k ≥ 1.

[30] Under the conditions (i)–(vi), for arbitrary fixed t ∈ [a, b], we can obtain

D(H(t, s)f(s, xk(s)),H(t, s′)f(s′, xk(s
′))) ≤ L

∣∣s− s′
∣∣ , ∀s, s′ ∈ [a, b], k ≥ 1,

for any fixed t ∈ [a, b].
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Theorem 3.9 ([30]). Under the hypotheses of Theorem 3.8, we consider the following iterative

procedure

Y0,m(t) = g(t),

Yk,m(t) = g(t)⊕ (FR)

b∫
a

H(s, t)⊙ f

(
s,

+∞∑
j=−∞

Yk−1,m

(
j

2m

)
⊙ ϕ(2ms− j)

)
ds,

k ≥ 1,

where Yk,m ∈ CF (R), k ≥ 0, m ∈ Z, the scaling function ϕ(x) a real valued bounded function

with suppϕ(s) ⊆ [−a, a], 0 < a < +∞, ϕ(s) ≥ 0, s ∈ R such that

+∞∑
j=−∞

ϕ(s− j) ≡ 1,

on R. Then the above iterative procedure converges to the unique solution of (21), x, as m, k →
∞, and the following error estimate holds true:

D(x(t), Yk,m(t)) ≤ (αMH(b− a))k

1− αMH(b− a)
D(x1(t), x0(t))

+
αMH(b− a)

1− αMH(b− a)
ω

(
Ymax,

a

2m

)
,

where

ω

(
Ymax,

a

2m

)
= max

{
ω

(
Y0,m,

a

2m

)
, ω

(
Y1,m,

a

2m

)
, · · · , ω

(
Yk,m,

a

2m

)}
,

and

D∗(x, Yk,m) ≤ (αMH(b− a))k

1− (αMH(b− a))k
D∗(x1, x0) +

αMH(b− a)

1− αMH(b− a)
ω

(
Ymax,

a

2m

)
.

4. The numerical solution of FFIEs by using iterative method and Simpson

quadrature rule

In this section, we present a new iterative method for solving LFFIE (1) where K(s, t) is a

positive crisp kernel function over the square s, t ∈ [a, b], f(t) is a fuzzy real valued function.

Also, we suppose that K(s, t) is continuous function, so it is uniformly continuous with respect

to t and there exists M > 0 such that M = max
t∈[a,b]

|K(s, t)|. In [16], authors proved the existence

and uniqueness of the solution of (1) by the following successive approximations method

F0(t) = f(t),

Fm(t) = f(t)⊕ (FR)

b∫
a

K(s, t)⊙ Fm−1(s)ds, ∀ t ∈ [a, b], m ≥ 1.

Here, we propose an iterative method to solve (1). To this end, first, we assume the uniform

partition of the interval [a, b]

∆ : a = s0 < s1 < · · · < s2n−1 < s2n = b, (24)
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with si = a + ih, where h = b−a
2n . Then we present the following iterative procedure to the

approximate the solution of (1) in point t

u0(t) = f(t),

um(t) = f(t)⊕ h
3 ⊙

∑n
i=1

(
K(s2i−2, t)⊙ um−1(s2i−2)

⊕ 4K(s2i−1, t)⊙ um−1(s2i−1)⊕K(s2i, t)⊙ um−1(s2i)

)
.

(25)

5. Convergence analysis

In this section, we get an error estimate between the exact solution and the approximate

solution of LFFIE (1) obtained by (25).

Theorem 5.1. Consider the LFFIE (1) with continuous kernel K(s, t) having positive sign on

[a, b]× [a, b], f continuous on [a, b]. If C = M(b− a) < 1 where M = max
s,t∈[a,b]

|K(s, t)|, then the

iterative procedure (25) converges to the unique solution of (1), F ∗, and its error estimate is as

follows

D∗(F ∗, um) ≤ D∗(F ∗, Fm) +D∗(Fm, um)

=
Cm+1

1− C
M0 +

4C

1− C

(
ω[a,b](f, h)+

+
C

(1− C)M
∥f∥ωt(k, h) +

1

(1− C)M
∥f∥ωs(k, h)

)
,

(26)

where

ωs(K,h) = sup
a≤t≤b

{|K(s1, t)−K(s2, t)| : |s1 − s2| ≤ h}, (27)

ωs(K, 2h) = sup
a≤t≤b

{|K(s1, t)−K(s2, t)| : |s1 − s2| ≤ 2h}, (28)

ωt(K,h) = sup
a≤s≤b

{|K(s, t1)−K(s, t2)| : |t1 − t2| ≤ h}. (29)

Proof. Since F1(t) = f(t)⊕ (FR)
b∫
a
K(s, t)⊙ F0(s)ds, we have

D(F1(t), u1(t)) = D(f(t), f(t)) +D

(
(FR)

b∫
a

K(s, t)⊙ F0(s)ds,

h

3
⊙

n∑
i=1

(
K(s2i−2, t)⊙ u0(s2i−2)⊕ 4K(s2i−1, t)⊙ u0(s2i−1)

⊕K(s2i, t)⊙ u0(ss2i)

))
≤

n∑
i=1

D

(
(FR)

s2i∫
s2i−2

K(s, t)⊙ f(s)ds,
h

3
⊙
(
K(s2i−2, t)⊙ f(s2i−2)

⊕4K(s2i−1, t)⊙ f(s2i−1)⊕K(s2i, t)⊙ f(s2i)

))
≤

n∑
i=1

3(s2i − s2i−2)ω[s2i−2,s2i]

(
Kf,

h

3

)
≤ 4(b− a)ω[a,b](Kf, h).
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By using Definition 2.6, we have

sup
[a,b]

D

(
f(α)⊙K(α, t), f(β)⊙K(β, t)

)
≤ D

(
f(α)⊙K(α, t), f(β)⊙K(α, t)

)
+D

(
f(β)⊙K(α, t), f(β)⊙K(β, t)

)
≤ |K(α, t)|D

(
f(α), f(β)

)
+ |K(α, t)−K(β, t)|D

(
f(β), 0̃

)
≤ Mω[a,b](f, h) + ωs(K,h) ∥f∥ ,

where α, β ∈ [a, b] and |α− β| ≤ h. Therefore

ω[a,b](Kf, h) ≤ Mω[a,b](f, h) + ∥f∥ωs(K,h).

So, we conclude, that

D(F1(t), u1(t)) ≤ 4(b− a)

(
Mω[a,b](f, h) + ∥f∥ωs(K,h)

)
= 4M(b− a)ω[a,b](f, h) + 4(b− a) ∥f∥ωs(K,h).

Now, since F2(t) = f(t)⊕ (FR)
b∫
a
K(s, t)⊙ F1(s)ds, we have

D(F2(t), u2(t)) = D

(
f(t)⊕ (FR)

b∫
a

K(s, t)⊙ F1(s)ds,

f(t)⊕ h

3
⊙

n∑
i=1

(
K(s2i−2, t)⊙ u1(s2i−2)⊕ 4K(s2i−1, t)⊙ u1(s2i−1)

⊕K(s2i, t)⊙ u1(s2i)

))
= D

( n∑
i=1

(FR)

s2i∫
s2i−2

K(s, t)⊙ F1(s)ds,
h

3
⊙

n∑
i=1

(
K(s2i−2, t)⊙ u1(s2i−2)

⊕4K(s2i−1, t)⊙ u1(s2i−1)⊕K(s2i, t)⊙ u1(s2i)

))
≤

n∑
i=1

D

(
(FR)

s2i∫
s2i−2

K(s, t)⊙ F1(s)ds,
h

3
⊙
(
K(s2i−2, t)⊙ F1(s2i−2)

⊕4K(s2i−1, t)⊙ F1(s2i−1)⊕K(s2i, t)⊙ F1(s2i)

))
+

n∑
i=1

D

(
h

3
⊙K(s2i−2, t)⊙ F1(s2i−2),

h

3
⊙K(s2i−2, t)⊙ u1(s2i−2)

)
+

n∑
i=1

D

(
4h

3
⊙K(s2i−1, t)⊙ F1(s2i−1),

4h

3
⊙K(s2i−1, t)⊙ u1(s2i−1)

)
+

n∑
i=1

D

(
h

3
⊙K(s2i, t)⊙ F1(s2i),

h

3
⊙K(s2i, t)⊙ u1(s2i)

)
≤ 4(b− a)ω[a,b](KF1, h) +

n∑
i=1

h

3
MD∗(F1, u1)

+

n∑
i=1

4h

3
MD∗(F1, u1) +

n∑
i=1

h

3
MD∗(F1, u1)
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= 4(b− a)ω[a,b](KF1, h) + 2nhMD∗(F1, u1)

= 4(b− a)Mω[a,b](F1, h) + 4(b− a) ∥F1∥ωs(K,h) + (b− a)MD∗(F1, u1).

So,

D∗(F2, u2) ≤ 4(b− a)Mω[a,b](F1, h) + 4(b− a) ∥F1∥ωs(K,h) + (b− a)MD∗(F1, u1).

By induction, for m ≥ 3, we get

D∗(Fm, um) ≤ 4(b− a)Mω[a,b](Fm−1, h) + 4(b− a) ∥Fm−1∥ωs(K,h)

+(b− a)MD∗(Fm−1, um−1),

D∗(Fm−1, um−1) ≤ 4(b− a)Mω[a,b](Fm−2, h) + 4(b− a) ∥Fm−2∥ωs(K,h)

+(b− a)MD∗(Fm−2, um−2),

...

D∗(F1, u1) ≤ 4(b− a)Mω[a,b](F0, h) + 4(b− a) ∥F0∥ωs(K,h).

Now, we obtain

D∗(Fm, um) ≤ 4(b− a)Mω[a,b](Fm−1, h) + 4(b− a) ∥Fm−1∥ωs(K,h)

+4(b− a)2M2ω[a,b](Fm−2, h) + 4(b− a)2M ∥Fm−2∥ωs(K,h)

+(b− a)2M2D∗(Fm−2, um−2)

= 4(b− a)Mω[a,b](Fm−1, h) + 4(b− a) ∥Fm−1∥ωs(K,h)

+4(b− a)2M2ω[a,b](Fm−2, h) + 4(b− a)2M ∥Fm−2∥ωs(K,h)

+(b− a)2M2

(
4(b− a)Mω[a,b](Fm−3, h) + 4(b− a) ∥Fm−3∥ωs(K,h)

+ (b− a)MD∗(Fm−3, um−3)

)

= 4(b− a)Mω[a,b](Fm−1, h) + 4(b− a) ∥Fm−1∥ωs(K,h)

+4(b− a)2M2ω[a,b](Fm−2, h) + 4(b− a)2M ∥Fm−2∥ωs(K,h)

+(b− a)2M2

(
4(b− a)Mω[a,b](Fm−3, h) + 4(b− a) ∥Fm−3∥ωs(K,h)

+ (b− a)MD∗(Fm−3, um−3)

)
= 4(b− a)Mω[a,b](Fm−1, h) + 4(b− a) ∥Fm−1∥ωs(K,h)
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+4(b− a)2M2ω[a,b](Fm−2, h) + 4(b− a)2M ∥Fm−2∥ωs(K,h)

+4(b− a)3M3ω[a,b](Fm−3, h) + 4(b− a)3M2 ∥Fm−3∥ωs(K,h)

+(b− a)3M3D∗(Fm−3, um−3).

Clearly, we can obtain the relation between the modulus of continuity of Fm and f for t1,

t2 ∈ [a, b] such that |t1 − t2| ≤ h, as follows

D(Fm(t1), Fm(t2)) = D

(
f(t1)⊕ (FR)

b∫
a

K(s, t1)⊙ Fm−1(s)ds,

f(t2)⊕ (FR)

b∫
a

K(s, t2)⊙ Fm−1(s)ds

)
≤ D(f(t1), f(t2))

+

b∫
a

D(K(s, t1)⊙ Fm−1(s),K(s, t2)⊙ Fm−1(s))ds

≤ ω[a,b](f, h) +

b∫
a

|K(s, t1)−K(s, t2)|D(Fm−1(s), 0̃)ds

= ω[a,b](f, h) + (b− a) ∥Fm−1∥ωt(K,h),

hence

ω[a,b](Fm, h) ≤ ω[a,b](f, h) + (b− a) ∥Fm−1∥ωt(K,h). (30)

By backward substitution of the above inequality into Eq. (31), we have

D∗(Fm, um) ≤ 4(b− a)Mω[a,b](f, h)

(
1 + (b− a)M + · · ·+ (b− a)m−1Mm−1

)
+ 4(b− a)2Mωt(K,h)

(
∥Fm−2∥+ (b− a)M ∥Fm−3∥

+ (b− a)2M2 ∥Fm−4∥+ · · ·+ (b− a)m−2Mm−2 ∥F0∥
)

+ 4(b− a)ωs(K,h)

(
∥Fm−1∥+ (b− a)M ∥Fm−2∥

+ (b− a)2M2 ∥Fm−3∥+ · · ·+ (b− a)m−1Mm−1 ∥F0∥
)

≤ 4Cω[a,b](f, h)

(
1 + C + C2 + · · ·+ Cm−1

)
+ 4C(b− a)ωt(K,h)

(
∥Fm−2∥+ C ∥Fm−3∥+ · · ·+ Cm−2 ∥F0∥

)
+ 4(b− a)ωs(K,h)

(
∥Fm−1∥+ C ∥Fm−2∥+ · · ·+ Cm−1 ∥F0∥

)
.
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So,

D∗(Fm, um) ≤ 4C

1− C
ω[a,b](f, h)

+4C(b− a)ωt(K,h)

(
∥Fm−2∥+ C ∥Fm−3∥+ · · ·+ Cm−2 ∥F0∥

)
+4(b− a)ωs(K,h)

(
∥Fm−1∥+ C ∥Fm−2∥+ · · ·+ Cm−1 ∥F0∥

)
.

Now, by using (12), we conclude that

D(Fm(t), Fm−1(t)) = D(f(t)⊕ (FR)
b∫
a
K(s, t)⊙ Fm−1(s)ds,

f(t)⊕ (FR)
b∫
a
K(s, t)⊙ Fm−2(s)ds)

≤ (FR)
b∫
a
|K(s, t)|D(Fm−1(s), Fm−2(s))ds

≤ (b− a)MD∗(Fm−1, Fm−2) ≤
(
(b− a)M

)m−1

D∗(F1, F0).

Consequently,

D(Fm(t), F0(t)) ≤ D(Fm(t), Fm−1(t)) +D(Fm−1(t), Fm−2(t)) + · · ·+D(F1, F0).

Taking supremum for t ∈ [a, b] from above inequality, we conclude that

D∗(Fm, F0) ≤
((

(b− a)M

)m−1

+

(
(b− a)M

)m−2

+ · · ·+ 1

)
D∗(F1, F0)

=

(
Cm−1 + Cm−2 + · · ·+ 1

)
D∗(F1, F0) ≤

1

1− C
D∗(F1, F0).

It is obvious that

D(F1(t), F0(t)) = D(f(t)⊕ (FR)
b∫
a
K(s, t)⊙ F0(s)ds, f(t))

≤ (FR)
b∫
a
|K(s, t)|D(f(s), 0̃)ds ≤ (b− a)M ∥f∥ = C ∥f∥ ,

and

D(Fm(t), 0̃) ≤ D(Fm(t), F0(t)) +D(F0(t), 0̃)

≤ 1

1− C
D∗(F1, F0) + ∥f∥ =

1

1− C
(b− a)M ∥f∥+ ∥f∥ .

So, we have:

D∗(Fm, 0̃) ≤ 1

1− C
∥f∥ .
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Hence,

D∗(Fm, um) ≤ 4C

1− C
ω[a,b](f, h)

+ 4C(b− a)ωt(K,h)

(
1

1− C
∥f∥+ C

1− C
∥f∥+ · · ·+ Cm−2

1− C
∥f∥

)
+ 4(b− a)ωs(K,h)

(
1

1− C
∥f∥+ C

1− C
∥f∥+ · · ·+ Cm−1

1− C
∥f∥

)
=

4C

1− C
ω[a,b](f, h) +

4C

1− C
(b− a) ∥f∥ωt(K,h)

(
1 + C + · · ·+ Cm−2

)
+

4

1− C
(b− a) ∥f∥ωs(K,h)

(
1 + C + · · ·+ Cm−1

)
≤ 4C

1− C

(
ω[a,b](f, h) +

C

(1− C)M
∥f∥ωt(K,h) +

1

(1− C)M
∥f∥ωs(K,h)

)
,

and

D∗(F ∗, um) ≤ D∗(F ∗, Fm) +D∗(Fm, um)

≤ Cm+1

1− C
M0 +

4C

1− C

(
ω[a,b](f, h) +

C

(1− C)M
∥f∥ωt(K,h)

+
1

(1− C)M
∥f∥ωs(K,h)

)
.

�

Since C < 1, it follows that lim
m→∞

Cm+1 = 0. In addition,

lim
h→0

ω[a,b](f, h) = 0, lim
h→0

ωs(K,h) = 0, lim
h→0

ωt(K,h) = 0.

So, lim
h→0,m→∞

D∗(F ∗, um) = 0 that shows the convergence of the proposed method.

5.1. Stopping criterion. It is critical to recognize that practical features are other than the-

oretical aspects. So, we can give the optimal values of m and h.

Suppose that the function f is Lipscitzian. By using Definition 2.6, we have:

ω(f, h) = sup
x,y∈[a,b]

{|f(x)− f(y)| ; |x− y| ≤ h} ≤ L |x− y| ≤ Lh.

Also, by using (27), (28), (29) and (30), we conclude that

D∗(F ∗, um) ≤ 4C

1− C

(
Lh+

C

(1− C)M
∥f∥ (L1h+ L2h)

)
.

Proposition 5.1 ([9]). Let f : [a, b] → RF be a Lipschitz function. Then

D

(
(FR)

b∫
a

f(t)dt, (α− a)⊙ f(u)⊕ (β − α)⊙ f(v)⊕ (b− β)⊙ f(w)

)

≤ 2Lmax

(
(α− a)2, (v − α)2, (β − v)2, (b− β)2

)
,
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for any α, β ∈ [a, b], and u ∈ [a, α], v ∈ [α, β], w ∈ [β, b].

Considering u = a, v = a+b
2 and w = b, α = 5a+b

6 and β = a+5b
6 , we obtain the fuzzy Simpson

quadrature formula

D

(
(FR)

b∫
a

f(t)dt,
b− a

6
⊙
[
f(a)⊕ 4f

(
a+ b

2

)
⊕ f(b)

])
≤ L.

2(b− a)2

9
.

Clearly, we can extend the above formula for Simpson quadrature rule for uniform partitions

∆ : a = t0 < t1 < · · · < t2n−1 < t2n = b,

with h = b−a
2n , in the following Corollary:

Corollary 5.1. For uniform partitions, the following Simpson inequality holds:

D

(
(FR)

b∫
a

f(t)dt,

n∑
i=1

(t2i − t2i−2)

6
⊙ [f(t2i−2)⊕ 4f(t2i−1) + f(t2i)]

)
≤ L.

2(b− a)2

9n
. (31)

Proof. As in [10], we have

D

(
(FR)

b∫
a

f(t)dt,

n∑
i=1

(t2i − t2i−2)

6
⊙ [f(t2i−2)⊕ 4f(t2i−1) + f(t2i)]

)

= D

( n∑
i=1

(FR)

t2i∫
t2i−2

f(t)dt,

n∑
i=1

(t2i − t2i−2)

6
⊙ [f(t2i−2)⊕ 4f(t2i−1) + f(t2i)]

)

≤
n∑

i=1

D

(
(FR)

t2i∫
t2i−2

f(t),
(t2i − t2i−2)

6
⊙ [f(t2i−2)⊕ 4f(t2i−1) + f(t2i)]

)

≤
n∑

i=1

L.
2(t2i − t2i−2)

2

9
= L.

2(b− a)2

9n
.

�

Theorem 5.2. Suppose that:

(1) there is L′ > 0 such that |K(α, t)−K(β, t)| ≤ L′ |α− β| , ∀ t, α, β ∈ [a, b];

(2) there is L > 0 such that |f(α)− f(β)| ≤ L |α− β| , ∀ α, β ∈ [a, b],

and under the assumptions of Theorem 3.3, we have:

D(F ∗(t), um(t)) ≤ Cm+1

1− C
M0 + L′′.

2(b− a)2

9n(1− C)
, (32)

and

m >

[
log

(1−C)ϵ
2M0

C

]
− 1, n > L′′.

4(b− a)n

9ϵ(1− C)
,

where

L′′ = L′ ∥f∥+ML.
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Proof. Since, the function K ⊙ f is Lipscitzian with upper bound L′′ = L′ ∥f∥+ML,

D(K(s, t)⊙ f(s),K(α, t)⊙ f(α))

≤ D(K(s, t)⊙ f(s),K(α, t)⊙ f(s)) +D(K(α, t)⊙ f(s),K(α, t)⊙ f(α))

≤ |K(s, t)−K(α, t)|D(f(s), 0̃)

+ |K(α, t)|D(f(s), f(α)) ≤ L′ |s− α| ∥f∥+ML |s− α|
= |s− α| (L′ ∥f∥+ML) = L′′ |s− α| , ∀ s, α ∈ [a, b],

from (12) and (26), we have

D

(
F1(t), u1(t)

)
= D

(
f(t)⊕

b∫
a

K(s, t)⊙ F0(s)ds,

f(t)⊕
n∑

i=1

b− a

6n
⊙ [K(s, t)⊙ u0(t2j−2)⊕ 4K(s, t)⊙ u0(t2j−1)⊕K(s, t)⊙ u0(t2j)]

)

= D

( b∫
a

K(s, t)⊙ f(s)ds,
n∑

i=1

b− a

6n
⊙ [K(s, t)⊙ f(t2j−2)⊕ 4K(s, t)⊙ f(t2j−1)

⊕K(s, t)⊙ f(t2j)]

)
≤ L′′.

2(b− a)2

9n
.

Now,

D

(
F2(t), u2(t)

)
= D

(
f(t)⊕

b∫
a

K(s, t)⊙ F1(s)ds,

f(t)⊕
n∑

i=1

b− a

6n
⊙ [K(s, t)⊙ u1(t2j−2)⊕ 4K(s, t)⊙ u1(t2j−1)⊕K(s, t)⊙ u1(t2j)]

)

≤ D

( b∫
a

K(s, t)⊙ F1(s)ds,
n∑

i=1

b− a

6n
⊙ [K(s, t)⊙ F1(t2j−2)⊕ 4K(s, t)⊙ F1(t2j−1)

⊕K(s, t)⊙ F1(t2j)]

)
+D

( n∑
i=1

b− a

6n
⊙ [K(s, t)⊙ F1(t2j−2)⊕ 4K(s, t)⊙ F1(t2j−1)

⊕K(s, t)⊙ F1(t2j)],
n∑

i=1

b− a

6n
⊙ [K(s, t)⊙ u1(t2j−2)⊕ 4K(s, t)⊙ u1(t2j−1)

⊕K(s, t)⊙ u1(t2j)]

)
≤ L′′.

2(b− a)2

9n
+

n∑
i=1

b− a

6n
|K(s, t)| [D(F1(t2j−2), u1(t2j−2))

+ 4D(F1(t2j−1), u1(t2j−1)) +D(F1(t2j), u1(t2j))]

≤ L′′.
2(b− a)2

9n
(1 + (b− a)M).

So, by induction for m > 2, we conclude that

D(Fm(t), um(t)) ≤ L′′.
2(b− a)2

9n
[1 + (b− a)M + · · ·+ (b− a)m−1Mm−1].
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Suppose that C = (b− a)M < 1, we get

1− (b− a)mMm

1− (b− a)M
<

1

1− (b− a)M
=

1

1− C
,

we conclude

D(Fm(t), um(t)) ≤ L′′.
2(b− a)2

9n(1− C)
.

Finally

D(F ∗(t), um(t)) ≤ D(F ∗(t), Fm(t)) +D(Fm(t), um(t))

≤ Cm+1

1− C
M0 + L′′.

2(b− a)2

9n(1− C)
.

For given ϵ > 0 the numbers n, m ∈ N will be determined as

m >

[
log

(1−C)ϵ
2M0

C

]
− 1,

and

n > L′′.
4(b− a)n

9ϵ(1− C)
.

�

6. Numerical stability analysis

In this section, we prove the numerical stability analysis for the presented method. As [37], we

consider new starting approximation y(t) = Y0(t) such that ∃ ϵ > 0 for which D(F0(t), Y0(t)) <

ϵ, ∀ t ∈ [a, b]. The acquired sequence of successive approximations is

Ym(t) = y(t)⊕ (FR)

b∫
a

K(s, t)⊙ Ym−1(s)ds,

and using the identical iterative method, the terms of produced sequence are

v0(t) = Y0(t) = y(t),

vm(t) = y(t)⊕
n∑

i=1

h

3
⊙
(
K(s2i−2, t)⊙ vm−1(s2i−2)

⊕ 4K(s2i−1, t)⊙ vm−1(s2i−1)⊕K(s2i, t)⊙ vm−1(s2i)

)
. m ≥ 1

Definition 6.1. The algorithm of the iterative method applied to the LFFIE (1) is said to be

numerically stable with respect to the choice of the first iteration iff there exist four constants

k1, k2, k3, k4 > 0 which are independent by h = b−a
2n such that

D∗(um, vm) ≤ k1ϵ+ k2

(
ω[a,b](f, h) + ω[a,b](v, h)

)
+ k3ωt(K,h) + k4ωs(K,h), (33)

where

k1 =
1

1− C
, k2 =

4C

1− C
,

k3 =
4C2

(1− C)2M
(∥f∥+ ∥v∥), k4 =

4C

(1− C)2M
(∥f∥+ ∥v∥).
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Theorem 6.1. By considering Theorem 5.1, the proposed method (25) is numerically stable in

respect of the first iteration.

Proof. At first, we obtain that

D(um(t), vm(t)) ≤ D(um(t), Fm(t)) +D(Fm(t), Ym(t)) +D(Ym(t), vm(t))

≤ 4C

1− C

(
ω[a,b](f, h) +

C

(1− C)M
∥f∥ωt(K,h) +

1

(1− C)M
∥f∥ωs(K,h)

)
+D(Fm(t), Ym(t)) +

4C

(1− C)

(
ω[a,b](v, h) +

C

(1− C)M
∥v∥ωt(K,h)

+
1

(1− C)M
∥v∥ωs(K,h)

)
.

However,

D(Fm(t), Ym(t))

= D

(
f(t)⊕ (FR)

b∫
a

K(s, t)⊙ Fm−1(s)ds, y(t)⊕ (FR)

b∫
a

K(s, t)⊙ Ym−1(s)ds

)

≤ D(f(t), y(t)) +D

(
(FR)

b∫
a

K(s, t)⊙ Fm−1(s)ds, (FR)

b∫
a

K(s, t)⊙ Ym−1(s)ds

)

≤ ϵ+ (FR)

b∫
a

|K(s, t)|D(Fm−1(s), Ym−1(s))ds.

We conclude that

D∗(Fm, Ym) ≤ ϵ+

b∫
a

MD∗(Fm−1, Ym−1)ds = ϵ+ CD∗(Fm−1, Ym−1),

and thus

D∗(Fm, Ym) ≤ ϵ+ CD∗(Fm−1, Ym−1)

D∗(Fm−1, Ym−1) ≤ ϵ+ CD∗(Fm−2, Ym−2)

...
...

D∗(F1, Y1) ≤ ϵ+ CD∗(F0, Y0).

So,

D∗(Fm, Ym) ≤ ϵ+ C

(
ϵ+ CD∗(Fm−2, Ym−2)

)
≤ ϵ+ Cϵ+ C2

(
ϵ+ CD∗(Fm−3, Ym−3)

)
...

≤ ϵ+ Cϵ+ C2ϵ+ C3ϵ+ · · ·+ CmD∗(F0, Y0)

≤ ϵ

(
1 + C + C2 + C3 + · · ·+ Cm

)
≤ ϵ

1− C
.
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Therefore,

D∗(um, vm) ≤ 4C

1− C

(
(ω[a,b](f, h) + ω[a,b](v, h))

+
C

(1− C)M
ωt(K,h)(∥f∥+ ∥v∥) + 1

(1− C)M
ωs(K,h)(∥f∥+ ∥v∥)

)
+

ϵ

1− C

= k1ϵ+ k2

(
ω[a,b](f, h) + ω[a,b](v, h)

)
+ k3ωt(K,h) + k4ωs(K,h),

where

k1 =
1

1− C
, k2 =

4C

1− C
, k3 =

4C2

(1− C)2M
(∥f∥+ ∥v∥), k4 =

4C

(1− C)2M
(∥f∥+ ∥v∥).

�

7. Numerical experiments

Finally, in this section, we solve some examples using the proposed method and compare

results with the method of [16].

Consider the following LFFIE

F (t) = f(t)⊕ (FR)

1∫
0

K(s, t)⊙ F (s)ds,

where

f(t, r) =
−1

52
r(5− 52t+ 2t2),

f(t, r) =
1

52
(r − 2)(5− 52t+ 2t2),

and

K(s, t) =
s2 + t2 + 2

13
, 0 ≤ s, t ≤ 1 and λ = 1.

The exact solution in this case is given by

u(t, r) = rt, u(t, r) = (2− r)t.

To compare the results with the results of [16], see Table 1.

Table 1. The accuracy on the level sets for Example 1 by using the method [16] and the proposed method in

t = 0.5 for h = 1
10

and m = 10.

The method of [16] Proposed method

r − level |F ∗ − um|,
∣∣∣F ∗ − um

∣∣∣ |F ∗ − um|,
∣∣∣F ∗ − um

∣∣∣
0.00 0. 4.81157× 10−4 0. 3.14809× 10−8

0.25 6.01446× 10−5 4.21012× 10−4 3.93512× 10−9 2.75458× 10−8

0.50 1.20289× 10−4 3.60868× 10−4 7.87024× 10−9 2.36107× 10−8

0.75 1.80434× 10−4 3.00723× 10−4 1.18054× 10−8 1.96756× 10−8

1.00 2.40578× 10−4 2.40578× 10−4 1.57405× 10−8 1.57405× 10−8

Consider the following LFFIE

F (t) = f(t)⊕ (FR)

1∫
0

K(s, t)⊙ F (s)ds,
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where

f(t, r) =
2

3
(2 + r)t,

f(t, r) =
−2

3
(r − 4)t,

and

K(s, t) = st, 0 ≤ s, t ≤ 1 and λ = 1.

The exact solution in this case is given by

u(t, r) = (2 + r)t, u(t, r) = (4− r)t.

In Table 2, we compared the results of the proposed method with the results of [16].

Table 2. The accuracy on the level sets for Example 2 by using the method of [16] and the proposed method in

t = 0.5 for h = 1
10

and m = 10.

The method of [16] Proposed method

r − level |F ∗ − um|,
∣∣∣F ∗ − um

∣∣∣ |F ∗ − um|,
∣∣∣F ∗ − um

∣∣∣
0.00 2.50029× 10−3 5.00057× 10−3 5.64503× 10−6 1.12901× 10−5

0.25 2.81282× 10−3 4.68804× 10−3 6.35066× 10−6 1.05844× 10−5

0.50 3.12536× 10−3 4.3755× 10−3 7.05629× 10−6 9.8788× 10−6

0.75 3.4379× 10−3 4.06297× 10−3 7.76192× 10−6 9.17317× 10−6

1.00 3.75043× 10−3 3.75043× 10−3 8.46754× 10−6 8.46754× 10−6

Consider the following LFFIE

F (t) = f(t)⊕ (FR)

1
2∫

0

K(s, t)⊙ F (s)ds,

where

f(t, r) = r(t+ cos(t))− cos

(
1

2
+ t

)
− 1

2
sin

(
1

2
+ t

)
,

f(t, r) =
1

2
(−2 + r)

(
− 2t− 2 cos t+ 2 cos

(
1

2
+ t

)
+ sin

(
1

2
+ t

))
,

and

K(s, t) = cos(s+ t), 0 ≤ s, t ≤ 1

2
and λ = 1.

The exact solution in this case is given by

u(t, r) = rt, u(t, r) = (2− r)t.

For more details, see Table 3.
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Table 3. The accuracy on the level sets for Example 3 by using the method of [16] and the proposed method in

t = 0.25 for h = 1
20

and m = 20.

The method of [16] Proposed method

r − level |F ∗ − um|,
∣∣∣F ∗ − um

∣∣∣ |F ∗ − um|,
∣∣∣F ∗ − um

∣∣∣
0.00 0. 4.20233× 10−4 0. 1.16667× 10−7

0.25 5.25291× 10−5 3.67704× 10−4 1.45834× 10−8 1.02084× 10−7

0.50 1.05058× 10−4 3.15175× 10−4 2.91668× 10−8 8.75004× 10−8

0.75 1.57587× 10−4 2.62646× 10−4 4.37502× 10−8 7.2917× 10−8

1.00 2.10117× 10−4 2.10117× 10−4 5.83336× 10−8 5.83336× 10−8

8. Conclusions

First, we reviewed some of the numerical methods for solving linear and nonlinear FFIEs

which had been done by several authors. Then, by using iterative method and Simpson quadra-

ture rule, we proposed a new approach to solve linear FFIE. Also, in two theorems, we presented

convergence analysis and the numerical stability of the proposed numerical method. The numer-

ical results show that the proposed method can be a suitable method for solving linear FFIEs.

Clearly, the proposed method can be applied to solve nonlinear FFIEs.
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